首页| 公司概况| 产品介绍| 技术服务| 资料园地| 新闻动态| 联系我们| 相关链接

                                 --------------------------------------------------------------------------------

     产品介绍:   氘代试剂: 种类价格|  核磁谱图| 理化数据| 氘代试剂相关知识|  常见问题答疑

                                色谱试剂: 种类价格| 相关谱图| 理化数据| 色谱试剂相关知识| 常见问题答疑

                           有机金属试剂: 种类价格|  相关谱图| 理化数据| 金属试剂相关知识| 常见问题答疑

                          赠品介绍: 种类价格| 使用说明| 赠品相关介绍| 常见问题答疑 

                                   --------------------------------------------------------------------------------   

     资料园地:   NMR谱仪操作 Varian-NMR: 氢谱碳谱| DEPT与APT| 基本二维谱| 进阶二维谱| 进阶核磁谱| 杂核检测| 变温| VnmrJ|

                        Bruker-NMR (Topspin32)|   Bruker-NMR old|     日本 Jeol-NMR (Am300)| 国产 W-NMR (Spinstudio)

                              网络软件使用Mestrec| Nuts|  Delta|  MestreNova|  Wnmr|  WXnmr|  Xwin32

                            NMR 论坛整理检测技术|   谱图分析|  其他交流  (栏目展开)

                      有机合成讲义反应机理| 官能基团转换| 命名反应| 立体化学| 立体电子化学| 有机氧化还原| 逆合成分析| 有机技术化学| 有机化学史| 有机功能化合物

                   化学信息学讲义:  美国化学文摘(印刷)CAonCD(光盘)/ SciFinder(网络)| Reaxys(网络)| 专利| SCI| 图书| 图书馆| 工具书| 期刊|  网络化学信息         

   NMR 讲座PPT:

      #1-NMR 相关知识介绍|   #2-NMR 仪器设备介绍|   #3-氘代试剂相关知识介绍|   #4-NMR 基本参数介绍 (part1)|

      #5-NMR 基本参数介绍 (part2)|       #6-NMR 谱图信号峰信息与其影响因素|  #7-NMR 各种谱图与正确氢碳解谱步骤|   #8-NMR 解谱范例 (part1)|

     #9-NMR 解谱范例 (part2)|      #10-NMR 解范例 (part3)|       #11-Mestrec 操作|   #12-MestreNova 操作|  

    #13-NMR 信息查找_期刊数据库|       #14-配样_Varian 基本氢碳谱操作|   #15-VnmrJ|            #16-Bruker NMR 基本氢碳谱操作 & 比较 Varian 操作|

    #17-五种碳谱 & DEPT & APT 谱| #18-NMR 杂核检测操作|  #19-NMR 基本二维谱操作介绍|   #20-NMR 弛豫 T1 的检测与应用|    

           #21-NMR 在化学领域中的应用| #22-如何灵活应用毛细管内标| #23-NMR 的应用范例_反应动力学的检测范例|      

           #24-NMR 的应用范例_ 检测手性化合物的 e.e.值|         #25-SSL 应用_Grignard|              #26-SSL 应用_Py Ylid| 

      #27-SSL 应用_氟谱在盐酸氟西汀的定性与定量分析探讨|  #28-SSL 应用_简易核磁共振氢谱在盐酸浓度测定的应用探讨|     

               #29-SSL 应用_快速辨认实验室未明有机溶剂   #30-SSL 应用_辨认与无机酸|

 

    

 


  

 相关谱图| 

 理化数据| 

 格氏试剂相关知识|

 常见问题答疑|

格氏试剂相关知识

(整理中)

氏试剂简介 (摘自 Google)
  一种金属有机化合物,通式RMgX(R代表烃基,X代表卤素)1901年由F.-A.V.利雅首次使用卤代烃RX与镁在醚类溶液中反应制得。又称利雅试剂试剂广泛用于有机合成中,从RMgX可以制得RHR—COOHR—CHOR—CH2OHR—OHCROHRR′CRR′ORnM(n为金属的化合价,M为其他金属)。在合适的情况下,RMgX还能与αβ-不饱和羰基化合物发生共轭的加成反应。 试剂在醚的稀溶液中以单体形式存在,并与两分子醚络合,浓溶液中以二聚体存在。
  原理
  由于镁原子直接和碳链相连,极化作用的结果是使邻近镁原子的那个碳原子呈负电性,使得这根C-Mg键极具反应活性。为了保证试剂不发生其他反应,反应一般在醚类溶剂里进行,常用的有乙醚或四氢呋喃。在逆合成方法中,格林尼亚试剂是一种亲核烃基d1合成子。
[
编辑本段]合成方法
  试剂的制法是将卤代烃(常用氯代烷或溴代烷)乙醚溶液缓缓加入被乙醚浸泡着的镁屑中,加料速度应能维持乙醚微沸,直至镁屑消失,即得试剂。反应是放热的,如果反应起动迟钝,可加一小粒碘来启动,一旦反应开始,乙醚发生沸腾后,乙醚的蒸气足以排除系统内空气的氧化作用,但不允许有水。试剂易与空气或水反应,故制得后应就近在容器中反应。氯乙烯和结合在烯碳上的氯不能在乙醚中与镁反应,如用四氢呋喃代替乙醚,可制得氯化乙烯基镁试剂。这种试剂有人称为诺曼试剂

 

发现历史
  1912年,诺贝尔化学奖授予法国化学家维克多·格林尼亚。他发现了金属镁与许多卤代烃的醚溶液反应,生成了一类有机合成的中间体——有机金属镁化合物,即试剂
  维克多·格林尼亚的家庭很富有,但他不爱读书,成为没出息的花花公子1892年,在一次宴会上,他邀请一位女伯爵跳舞。女伯爵拒绝,并说她最讨厌他这样的花花公子。他受此羞辱,悔恨交加,终于猛醒过来,决心抛弃恶习,奋发上进。他离开了家庭。
  格林尼亚离家出走来到里昂,他本想入里昂大学就读,但是他从来就没有认真读过书,中、小学的学业荒废得太多了,这样的基础如何考得上大学呀,格林尼亚只好一切从头开始。幸好有一个叫路易·波尔韦的教育很同情他的遭遇,愿意帮助他补习功课。经过老教授的精心辅导和他自己的刻苦努力,花了两年的时间,才把耽误的功课补习完了。 这样,格林尼亚进入了里昂大学插班读书。他深知得到读书的机会来之不易,眼前只有一条路就是努力、努力、再努力;发奋、发奋、再发奋。当时学校有机化学权威巴比尔看中了他的刻苦精神和才能,于是,格林尼亚在巴比尔教授的指导下,学习和从事研究工作。1901年由于格林尼亚发现了试剂而被授予博士学位。
  格林尼亚发现试剂时,曾经把它取名格林尼亚-巴比尔试剂,用来表示他对导师的感激之情。但是,巴比尔坚持认为自己没有在发现过程中作出努力,要求把试剂名称改成格林尼亚试剂。巴比尔公正淡泊为人称颂,格林尼亚与巴比尔的师生深情也可见一斑。

 

化学性质
  1.强烈的亲核性质
  Grignard试剂可与物质中的活泼氢(如水、乙醇的羟基氢、乙炔的末端氢)反应,生成相应的烃基。如:
  X-Mg-CH2CH3 + H2O === CH3CH3
  X-Mg-CH2CH3 + CH3CH2OH === CH3CH3
  X-Mg-CH2CH3 + HC≡CH === CH3CH3
  2. CO2O2的反应
  试剂可以与二氧化碳或氧气发生亲核加成反应生成增加一个碳的羧酸或同碳数的过氧化合物。试剂与二氧化碳的加成反应在有机合成中也有着重要的意义,不仅通过生成新的 C-C 键实现了碳链的增长,而且恰到好处地实现了增加一个碳原子并引入羧基官能团,是制备增加一个碳原子的羧酸的最常用方法之一。
  3. 活泼卤代烃试剂与活泼卤代烃之间的偶联反应
  此反应实现的是由活泼的卤代烃制备的试剂同活泼卤代烃基之间的偶连,比如由苄基卤、烯丙基卤或三级卤代烷制备的试剂
  此反应在某种程度上说可以看作是对Wurtz反应和Wurtz-Fittig反应以及乌尔曼反应的互补,因为这几个反应只能实现不活泼的烃基的偶连,而由试剂实现的偶连反应不仅引入了活泼基团,而且由于它的特殊结构还可以实现不同的烃基之间的偶连。
  由卤代烃的烃基通过偶连反应制备各种烃类,这些反应类型对于合成中碳链的增长有着非常重要的意义,要灵活掌握。
  4、与醛酮加成成醇
  这也许是试剂在合成上最重要的性质之一。此类反应是试剂的显负价的碳原子显示了良好的亲核性,对缺电子的醛酮的羰基碳原子进行亲核加成,而显正电的镁离子加成到羰基氧原子上,生成—C—C—O—Mg—X的结构,再经过酸催化下的水解去掉镁的部分,生成醇的结构和镁的卤化物和氢氧化物。
  此类反应可以用来合成各种醇类,也是有机合成中合成醇类的最常用的方法。在做复杂的醇类的反合成分析时,要清楚地意识到醇羟基的α碳原子就是原来醛酮分子中的羰基碳,醇羟基的一个β碳原子可能就是原来试剂中显负价的官能碳,而α碳原子和这个β碳原子之间的单键就是通过这个亲核加成反应新形成的。
  通常试剂与醛类发生亲核加成反应生成二级醇;试剂与酮类发生亲核加成反应生成三级醇;只有试剂与甲醛发生亲核加成反应才会生成一级醇,而且这也是制备增加一个碳的醇的常用方法。另外,试剂与环氧乙烷加成,可得到增加2个碳原子的一级醇。